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EXECUTIVE SUMMARY

Wind applications require the ability to simulate rotating blades. To support this use-case, a novel design-order
sliding mesh algorithm has been developed and deployed. The hybrid method combines the control volume
finite element methodology (CVFEM) with concepts found within a discontinuous Galerkin (DG) finite
element method (FEM) to manage a sliding mesh. The method has been demonstrated to be design-order
for the tested polynomial basis (P=1 and P=2) and has been deployed to provide production simulation
capability for a Vestas V27 (225 kW) wind turbine. Other stationary and canonical rotating flow simulations
are also presented. As the majority of wind-energy applications are driving extensive usage of hybrid
meshes, a foundational study that outlines near-wall numerical behavior for a variety of element topologies
is presented. Results indicate that the proposed nonlinear stabilization operator (NSO) is an effective
stabilization methodology to control Gibbs phenomena at large cell Peclet numbers. The study also provides
practical mesh resolution guidelines for future analysis efforts. Application-driven performance and algorithmic
improvements have been carried out to increase robustness of the scheme on hybrid production wind energy
meshes. Specifically, the Kokkos-based Nalu Kernel construct outlined in the FY17/Q4 ExaWind milestone
has been transitioned to the hybrid mesh regime. This code base is exercised within a full V27 production
run. Simulation timings for parallel search and custom ghosting are presented. As the low-Mach application
space requires implicit matrix solves, the cost of matrix reinitialization has been evaluated on a variety
of production meshes. Results indicate that at low element counts, i.e., fewer than 100 million elements,
matrix graph initialization and preconditioner setup times are small. However, as mesh sizes increase,
e.g., 500 million elements, simulation time associated with “setup-up” costs can increase to nearly 50% of
overall simulation time when using the full Tpetra solver stack and nearly 35% when using a mixed Tpetra-
Hypre-based solver stack. The report also highlights the project achievement of surpassing the 1 billion
element mesh scale for a production V27 hybrid mesh. A detailed timing breakdown is presented that again
suggests work to be done in the setup events associated with the linear system. In order to mitigate these
initialization costs, several application paths have been explored, all of which are designed to reduce the
frequency of matrix reinitialization. Methods such as removing Jacobian entries on the dynamic matrix
columns (in concert with increased inner equation iterations), and lagging of Jacobian entries have reduced
setup times at the cost of numerical stability. Artificially increasing, or bloating, the matrix stencil to ensure
that full Jacobians are included is developed with results suggesting that this methodology is useful in
decreasing reinitialization events without loss of matrix contributions. With the above foundational advances
in computational capability, the project is well positioned to begin scientific inquiry on a variety of wind-farm
physics such as turbine/turbine wake interactions.1

1Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525. This report followed the Sandia National Laboratories
formal review and approval process (SAND2017-13716 R). As such, the technical report is suitable for unlimited release.
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1. INTRODUCTION

Many applications in computational fluid dynamics require predicting a complex flow field in the presence
of moving boundaries. For example, in turbomachinery, rotorcraft, and wind energy applications, a solid
boundary must be rotated within a turbulent flow. The goal of this milestone is to develop, verify, deploy,
and benchmark a novel hybrid CVFEM/DG discretization approach for wind energy applications that involve
rotating blades.

The managing of moving boundaries is not without complexity as this use case requires geometric mesh
connectivity changes. This dynamic mesh connectivity drives algorithmic requirements including parallel
searches, matrix graph re-initialization, and frequent preconditioner setup events. In most cases previously
run, the cost of such re-initialization events could be amortized over the full simulation time as the meshes
were static in nature. However, for the end ExaWind use case, which requires the simulation of O(100)
multi-MW wind turbines sited within a 10 km x 10 km domain, mesh movement will be routine. Moreover,
billions of computational elements will be required. In support of exascale computing, scaling of these core
interfaces will be critical to the success of the project.

In section 2, the milestone description is provided. Section 3 provides a high-level description of the
hybrid numerical methodology to support the sliding mesh use case. A small sampling of code verification
that has been conducted is also provided. A set of production runs is provided in section 4. Solver and
application performance benchmarking/scaling is provided in section 5. Application improvements including
methods to reduce the frequency or effectiveness of matrix re-initialization is presented in section 6. Finally,
in section 7, notable achievements, conclusions and an identified path forward is described.

2. MILESTONE DESCRIPTION & REQUIREMENTS

2.1 Milestone Description:

Although a preliminary sliding mesh/overset method has been developed in the Nalu application code base,
improvements in algorithmic robustness in the presence of surface faceting must be accomplished. Moreover,
efficient parallel searches (leveraged from the SNL-ATDM effort) must be deployed. Evaluation and possible
incorporation of load balancing techniques, either in situ or as a pre-processing Seacas::decomp() step, should
be explored should the search/assemble procedure warrant improvements. Finally, matrix initialization
performance at the desired early project scale, i.e., O(1) billion elements, should be established to guide
future code infrastructure improvements. Where possible, application modifications to reduce the frequency
of setup costs will be evaluated and deployed.

2.2 Milestone Execution Plan:

1. Improve baseline sliding mesh capability at curved surfaces.

2. Evaluate ATDM-based parallel search methods.

3. Establish matrix set-up cost timings.

4. Evaluate possible lagging of matrix update.

5. Evaluate reduction of matrix system by omitting moving block column entries in favor of multiple
matrix assembly/solve iterations.

2.3 Milestone Completion Criteria:

A report will be created documenting evaluated and executed algorithm design, and simulation timings along
with any identified bottlenecks. Code created will be posted on the public repository along with relevant
documentation.

Exascale Computing Project (ECP) 1 ECP FY18 Q1



3. NUMERICAL OVERVIEW

The core ExaWind numerical methodology falls within the class of vertex-centered finite volume schemes
with specific emphasis on the control volume finite element method (CVFEM) [11]. For more information on
the core algorithm, the reader is referred to the Nalu theory document [5], or recent low- and higher-order
descriptions [4]. The suite of numerical methods under consideration can be found in [3].

3.1 Dual Volume Definition

The control volume finite element method simply defines a dual mesh constructed within each element. A
weak variational statement is written and a piece-wise constant test function is applied. Figure 1 provides an
overview of both low-order and higher-order node and dual volume rules. Integration points are defined at
two locations: for flux calculations, the method uses subcontrol surfaces; for source and time contributions,
the subcontrol volume center of each dual volume is used. To recover a low-order edge-based vertex-centered
(EBVC) method, dual volume subcontrol area vectors are assembled to the edges of the low-order elements
while dual nodal volumes are assembled to the nodes of the elements. Both the edge- and element-based
schemes can be considered a Petrov-Galerkin method.

Figure 1: Polynomial promotion for a canonical CVFEM quad element patch
from P=1 (upper left) to P=6 (lower right).

3.2 Hyrbid CVFEM/DG Sliding Mesh Algorithm

In wind energy applications, both sliding mesh and overset methods are viable approaches to manage the
moving body fluid interaction. Although both are actively developed in ExaWind, the sliding mesh capability
is highlighted in this milestone report. In sliding mesh applications, a prescribed mesh interface is defined to
manage the solid body movement/rotation. Recently, a design-order hybrid CVFEM/DG scheme has been
developed and deployed to the wind energy application space [6]. In this section, only a high-level description
of the scheme will be provided. More details can also be found in the Nalu online theory manual 2.

The description of the methodology begins as follows: consider two domains, ΩA and ΩB , which have a
common interface, ΓAB , and a set of interfaces not in common, Γ\ΓAB , see Figure 2. Each domain has a set

2http://nalu.readthedocs.io
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Γ
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ΩA ΩB

Figure 2: Two-block example with two blocks, ΩA and ΩB , and one common
surface definition, ΓAB .

of outwardly pointing normals nAj and nBj . In the idealized case, these normals are perfectly opposite from
each other. In practice, due to surface faceting, such an idealized interface will not be found at low-order
curved surfaces.

The objective of the sliding mesh algorithm is to provide a design-order reconstruction technique to
manage the non-conformal configuration. Principles of DG are used to define an interior penalty approach [1].
As a high-level example, consider the time varying heat conduction equation for temperature, T , on each
block ΩA and ΩB with a nonconformal interface as defined in Figure 2:

∫
ΩA

w

(
ρCp

∂T

∂t
− S

)
dΩ −

∫
ΩA

∂w

∂xj
qjdΩ

+

∫
Γ\ΓAB

wqjnjdΓ

+

∫
ΓAB

wT̂ (A,B)dΓ

+

∫
ΓAB

∂w

∂xj
nAj λ

AB
IP (TA − TB)dΓ, (1)

∫
ΩB

w

(
ρCp

∂T

∂t
− S

)
dΩ −

∫
ΩB

∂w

∂xj
qjdΩ

+

∫
Γ\ΓBA

wqjnjdΓ

+

∫
ΓBA

wT̂ (B,A)dΓ

+

∫
ΓBA

∂w

∂xj
nBj λ

BA
IP

(
TB − TA)

)
dΓ. (2)

Above, ρ and Cp represent density and specific heat, respectively. The heat flux diffusional vector, qj , is given
by,

qj = −k ∂T
∂xj

. (3)

The penalty parameter, λ and numerical flux, T̂ (α, β) define the choice of the DG scheme. For piecewise
constant CVFEM test functions, the final form of the above equation set is as follows:∫

ΩA

(
ρCp

∂T

∂t
− S

)
dΩ +

∫
Γ\ΓAB

qjnjdΓ +

∫
ΓAB

T̂ (A,B)dΓ = 0, (4)∫
ΩB

(
ρCp

∂T

∂t
− S

)
dΩ +

∫
Γ\ΓBA

qjnjdΓ +

∫
ΓBA

T̂ (B,A)dΓ = 0. (5)
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(a) Current and opposite sides are A and B respec-
tively.

ΓΑ

ΓΒ
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(b) Current and opposite sides are B and A respec-
tively.

Figure 3: Description of the numerical flux calculation for the set of current
and opposite interfaces.

The numerical flux is defined as,

T̂ (α, β) =
1

2
(qαj n

α
j − q

β
j n

β
j ) + λαβT (Tα − T β). (6)

Note that the interior penalty term, i.e., the gradient of the test function vanishes in the CVFEM scheme.
Figure 3 graphically demonstrates the procedure in which current integration point locations for a set

of non-conformal surfaces are projected to the opposing exposed non-conformal face. The methodology
follows a dual-pass approach. First, the current face exposed integration points are projected to the opposing
surface. An integration point opposing face/element data structure is defined to capture the required mesh
connectivity. In the second pass, the former opposing exposed faces, which are now the current exposed
integration point set, are projected to the opposing face.

Matrix contributions are desired to be provided for both the current and opposing element connectivity.
The given mesh decomposition will likely require parallel searches to obtain the opposing integration point
elemental contributions. Moreover, the connectivity between the exposed face and attached element, which
is obtained by the Sierra Toolkit, is required to adequately specify the column entries for each row on the
exposed surface.

The required extensions to a low-Mach formulations are described in the theory manual with details
appearing in the recently submitted JCP article [6].

3.3 Hybrid CVFEM/DG Verification

In order to provide a high-level overview of code verification, two cases will be provided. The first is a simple
steady Laplace operator while the second is a viscous vortex temporal case. Both have analytical solutions
that are provided elsewhere [6]. Each study provides the algorithmic order-of-accuracy for P=1 and P=2
CVFEM approaches. Although the code has been transitioned to use arbitrary polynomial promotion, this
study is limited to quadratic hexahedral-based elements.

Figure 4 provides the functional form for the manufactured scalar temperature solution while Figure 5
provides order-of-accuracy for a second- and third-order scheme. As with previous verification efforts, even
with modest polynomial promotion, significant error reductions are noted.

In the second verification case highlighted in this report, a viscous vortex, which originates either in a
P=1 or P=2 mesh block, travels past a non-conformal interface to either a P=1 or P=2 mesh block. This use
case is germane to the wind energy application space as it is anticipated that a hybrid polynomial order will
be in use, e.g., low-order near the blade and high-order within the wake. Figure 6 provides shadings of the
velocity magnitude at the initial and final time plane while Figure 7 outlines the velocity error norms at 0.1
seconds. As can be seen from the norm calculations, the homogeneous higher-order scheme provides the best
accuracy. As shown, the limiting numerical accuracy (P=1) prevails over each hybrid mesh block. Effectively,
error in the first P=1 block is carried through to the P=2 block just as the high-accuracy P=2 solution is
corrupted by the lower-order P=1 block. Studies in mixed-order methods within the wind energy application
space are in order (see the FY17/Q3 ExaWind validation of a tip vortex [10] as a good candidate).

Exascale Computing Project (ECP) 4 ECP FY18 Q1



Figure 4: Steady, thermal diffusion manufactured solution; shown are shadings
of the temperature field.
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Figure 5: Steady, Laplace order of accuracy.
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(a) Time = 0.0 seconds (b) Time = 0.10 seconds.

Figure 6: Viscous vortex velocity magnitude shadings at initial and final time
planes.
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Figure 7: Viscous vortex norms for varying polynomial order combinations at
the non-conformal interface.
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3.4 Nonlinear Stabilization Operator

Although the deployed numerical scheme in Nalu can be classified as a low-dissipation scheme, which generally
relies on central or Galerkin-based advection operators, at extreme cell Peclet numbers, a stabilization
approach is required to adequately control the Gibbs phenomenon. This numerical behavior is simply defined
as numerical ringing due to the non-monotonicity of the combined advection/diffusion operator. Although the
code supports flux reconstruction methods (with classic limiters such as the Van Leer approach), such methods,
although effective, are numerically diffuse. Moreover, they are (in most cases) limited to second-order spatial
accuracy on unstructured meshes. Upwinded residual-based approaches [12] are also coded in Nalu.

In this project, extensive research concentrated on stable and robust stabilization operators is anticipated.
Towards this end, the current numerical stabilization approach has been to combine elements of the entropy-
viscosity method [8] with a discontinuity capturing operator (DCO) [12] found in the high-speed compressible
FEM literature. In this method, a non-isotropic diffusional flux coefficient is proportional to a fine-scale
residual. The fine-scale residual can be based on the degree-of-freedom itself or a fine-scale turbulent kinetic
energy residual. This stabilization kernel is design-order and, as will be shown, has proven to be an effective
stabilization approach when used in concert with the standard low-dissipation operators.

Although there are out-year project deliverables to drive the continued development and improvement of
the NSO, the stabilization kernel currently in use for any variable φ is simply defined as,

−
∑
e

∫
Γ

ν(R)gij
∂φ

∂xj
nidS. (7)

A fourth-order form, which writes the stabilization as the difference between the Gauss-point gradient
and the projected nodal gradient interpolated to the Gauss-point, is also supported,

−
∑
e

∫
Γ

ν(R)gij(
∂φ

∂xj
−Gjφ)nidS. (8)

For completeness, the covariant and contravarient metric tensor are given by,

gij =
∂xi
∂ξk

∂xj
∂ξk

, (9)

and

gij =
∂ξk
∂xi

∂ξk
∂xj

, (10)

where ξ = (ξ1, ξ2, ξ3)T . The current form of ν(R) currently used is as follows,

ν =

√
RkRk

∂φ
∂xi

gij ∂φ∂xj

. (11)

In the above expression for the non-isotropic viscosity ν, the residual, Rk can be approximated in many
ways. The residual (Rk) can be based on the fine-scale partial differential equation for variable φ or a
linearized form of the advection operator for φ. The residual can also be based on the fine-scale turbulent
kinetic energy partial differential equation. This kinetic energy-based residual can also be interpreted as a
LES subgrid scale model [7]. Please refer to the Nalu theory manual for more information on this developing
approach.

4. PRODUCTION RESULTS

Several production cases have been run to determine the robustness of the hybrid CVFEM/DG scheme. In
this section, only two of studies will be briefly outlined. The first demonstration case is a spinning cube while
the second is a production Vestas V27 turbine.
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(a) P1P1-R1.

(b) P2P2-R0.

Figure 8: Spinning cube at 0.05 seconds for the P=1 and P=2 order; volume-
rendered Q-criterion.

4.1 Spinning Cube

The spinning cube proof-of-concept study outlined in this report is an extension of Zhang [13], however, the
Reynolds number has been increased to 4,000 and the RPM to 3600. In this study, the entropy-viscosity
approach of Guermond is used both for stabilization and as a large-eddy simulation (LES) model. Mixed
order interfaces are again used as with the viscous vortex problem. Figure 8 outlines the volume-rendered
Q-criterion at 0.05 seconds for the refined P=1 and base P=2 mesh. Due to space, the full set of mesh
refinements are not included in this report. Drag coefficient predictions for the two P=1 and P=2 simulations
are 1.1565 and 1.1576, respectively. For non-spinning cubes, theory suggests a value of unity. Although
simulations shown for the P=1 and P=2 mesh are using the same number of elements, the increased turbulent
flow structure provided in the volume-rendered Q-criterion is noteable.

4.2 V27bo; Blades Only

In this section, a V27bo set of airfoils are rotated at a RPM of 5.0725. This mesh study does not include
the tower and nacelle as it represents the first production simulation run carried out in FY17. This effort
was to simply test the outlined DG scheme at a production V27 scale (26 meter diameter rotor without tilt).
Based on the inlet velocity of 10 m

s , the tip speed ratio is approximately 6.8. The baseline hybrid mesh is
comprised of approximately 150 million elements consisting of low-order hexahedral, tetrahedral, pyramid,
and wedge topologies. At the DG interface, the hexahedral topology is used. The max cell Peclet number is
approximately seven million. The Wall Adapting Local Viscosity (WALE) LES model is activated. Figure 9
outlines the volume-rendered Q-criterion from the windward and leeward perspective.

4.3 V27; Full Turbine

In this section, a full production mesh of the entire V27 turbine is provided. Tower and nacelle geometry
is now included. In this simulation, design conditions are respected (RPM of 43) with a cross flow of 7.6
m
s . Again, the WALE model is used. The DG interface now includes the tetrahedral topology, which will

be seen in later sections, required additional algorithmic improvements. Figure 10 provides a of geometric
description of the domain. Again, the mesh is hybrid in nature using the full set of topologies supported in
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(a) Windward view.

(b) Leeward view.

Figure 9: Vestas V27bo rotor simulation at 2.389763 seconds; volume rendered
Q-criterion.
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(a) V27 full domain.

(b) Close-up of the cone section and nacelle; surface
mesh lines are in black.

Figure 10: Vestas V27 mesh attributes for the full turbine blade.

the code base. The mesh is using approximately 160 million elements. Figure 11 is a very preliminary velocity
field prediction at a cut plane with the matching 4-degree wing tilt (shown from the windward and leeward
perspective). The nonlinear stabilization operator (NSO) is in use as is a second-order accurate temporal
integration scheme (BDF2).

Finally, the newly developed Kokkos-based interior elemental algorithmic kernels, which were outlined
in the FY17/Q4 ExaWind milestone, have been activated for this hybrid full-scale V27 mesh. As noted in
the previous FY17/Q4 milestone, the transition of the MasterElement implementations to the Kokkos-shared
memory view data structures facilitated this effort as did other core algorithmic Kernel development. In the
current simulation shown in Figure 11, only SIMD is active with the number of threads set to unity.

5. SOLVER AND APPLICATION CODE BENCHMARKING

In this section, we present strong-scaling results for the V27 moving-mesh simulations with several refinement
levels. These are the meshes, V27 41 (refinements R0 66M and R1 500M elements), and V27 41a (refinements
R0 166M and R1 1.3 Billion elements; a R2 mesh, which was greater that four Billion elements, was generated,
however, has not yet been tested). The V27 problem presents several difficult challenges for the pressure
continuity solver. The mesh is hybrid as described above containing hexahedral, tetrahedral, pyramid, and
wedge finite elements. The element aspect ratios can be large near surfaces. Further, the mesh is non-
conforming and consists of different blocks or regions with mesh movement. Consequently, the momentum
and continuity linear-system matrices must be reinitialized and reassembled each time step. These simulations
were run in first-order accurate in time mode, but second-order accurate results should have very similar times.
In addition, the associated preconditioners are reconstructed for these matrices. The set-up time for these
operations can be a significant overhead that may not scale well and the CPU time has been tracked with
timers in the Nalu code. Finally, the number of nodes in the mesh defines the matrix row size. Hybrid mesh
element counts are typically a factor of six larger than the number of nodes, especially when the majority of
elements are tetrahedral in nature.
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Figure 11: Preliminary V27 full tower results, shown velocity shadings from
the windward and leeward perspectives; simulations are ongoing and seemingly
stable.

5.1 Solver Descriptions

In the description of numerical methods employed in the Nalu model, it was noted that the pressure continuity
equation solver is based on a preconditioned non-symmetric GMRES Krylov iteration. The preconditioner
consists of one V -cycle of an algebraic multigrid (AMG) method. Initially, the Nalu continuity solver was
interfaced to the Trilinos MueLu SA-AMG framework. MueLu implements a smoothed-aggregation coarsening
algorithm to construct the coarse matrices in the V -cycle. Unsmoothed aggregation or prolongation is also
possible and has proven to be more effective for the V27 problem as discussed below. More recently, Nalu has
been interfaced to the Hypre solver framework from the CASC group at LLNL. Hypre provides the GMRES
iterative solver and boomerAMG preconditioner. The classical Ruge–Stüben C-AMG coarsening algorithm
is implemented by boomerAMG. SA-AMG and C-AMG represent the two fundamental algebraic-multigrid
(AMG) approaches to creating preconditioners. They will be compared here on the basis of set-up times,
solve times and overall simulation wall-clock times in a strong-scaling study.

The GMRES Krylov iterative solvers employed by Trilinos and Hypre differ in several respects that can
affect the parallel performance and scaling. The main difference lies in the Gram-Schmidt orthogonalization
algorithms for the Krylov vectors and the communication associated with global reductions.

1. Hypre MGS-GMRES iterative solver: Modified Gram-Schmidt; numerically Krylov vectors loss of
orthogonality but more stable; requires separate inner products for Krylov basis; less scalable.

2. Trilinos-Belos ICGS-GMRES iterative solver: Iterated classical Gram-Schmidt; requires two passes of
Gram-Schmidt(re-orthogonalization) to recover stability of MGS; only one large vector MPI Allreduce

required for inner products; highly scalable.

The MGS-GMRES is widely implemented but may be less scalable at large processor counts. A smaller Krylov
subspace dimension or restart will mitigate these affects. The iterated ICGS-GMRES trades computation for
communication and has proven to be more scalable.

Given the linear system of equations Ax = b, smoothed aggregation is based on strongly connected
neighborhoods:

Ni(ε) =
{
j : |aij | ≥ ε

√
aii ajj

}
and the prolongation operator P is constructed by defining Ci as the set of nodes in aggregate i and P̃ij = 1,
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i ∈ Cj , and 0 otherwise. The filtered matrix AF = (aij)
F is defined as aFij = aij , j ∈ Ni(ε) and 0 otherwise.

aFij = aii −
n∑
j=1

(
aij − aFij

)
The prolongation operator is the damped Jacobi smoothing P =

(
I − ω D−1 AF

)
P̃ where D = diag(A),

AF is the filtered matrix, and ω = 3/( 4 λmax(D−1 A) ). Unsmoothed prolongation is obtained by setting
ω = 0. This has proven to be an effective coarsening strategy for the V27 problem due to the lower sparsity
of the tentative prolongator P̃ and the resulting coarse matrices Ac = P̃T A P̃ .

In the classical Ruge-Stüben coarsening algorithm two nodes ui and uj are said to be connected if aij 6= 0.
Given a threshold value 0 < θ ≤ 1, the node (point) ui is strongly connected to uj if

|aij | ≥ θmax
k 6=i
|aik|

The set of grid points selected to be part of the coarse grid is called C. An element in C will be called a
C-point and these are chosen based on the number of strong connections to each node. The remaining points
left out of C are called fine points and belong to the set F . Points in F are called F -points. The prolongation
operator is constructed row wise using interpolation. If i is a coarse node, then the i–th row is the identity. If
i is a fine node, then a row of a weight matrix is employed. Thus, row-wise coarsening tends to emulate to
geometric approaches.

The pressure continuity solver contribution to the overall simulation wall-clock time is determined by
several factors. The number of GMRES solver iterations required to achieve a given tolerance level may
be small. However, the smoothing sweeps applied to the coarse matrices in the V -cycle can be expensive if
these matrices are not sufficiently sparse. The sparsity (or complexity) of these matrices is determined by the
number of non-zeros per row and coarsening rates. SA-AMG generally coarsens by 3×, whereas C-AMG
coarsens by 2×. The C-AMG interpolation stencil width changes the complexity and aggressive coarsening
can change the rate to 4×. Unsmoothed prolongation in SA-AMG with ω = 0 can further improve sparsity.
The number of V –cycle levels and size of the coarse system also affect the GMRES convergence rate, amount
of parallel communication and run-time.

5.2 Solver Performance

For the purposes of our V27 strong scaling study, the optimal algorithmic and parameter choices for MueLu
were determined by J. Hu [9] as follows. Unsmoothed prolongation ω = 0 was employed with MueLu, leading
to sparser coarse matrices. A distance Laplacian dropping scheme is applied with a 0.02 threshold drop
tolerance. An implicit prolongation operator is retained. Re-balancing is also applied to the coarse matrices
to improve parallel performance. Four sweeps of an L1 Gauss-Seidel smoother are performed at each V -cycle
level (both up and down the hierarchy) and the coarse level solver is SuperLU. For the V27 problem, the
V -cycle hierarchy typically contains eight levels.

Coarsening for the Hypre C-AMG is based on the parallel modified independent set (PMIS) algorithm
of Hans de Sterck [2] allowing for a parallel set-up phase. A transposed prolongation operator is retained
for triple-matrix RAP products. Aggressive coarsening is applied on the first two V -cycle levels with multi-
pass interpolation and a stencil width of two elements per row. The remaining levels employ extended+i
interpolation. Interpolation truncation level 0.25 is specified together with a maximum interpolation stencil
width of two matrix elements per row. The smoother is a hybrid Gauss-Seidel relaxation scheme. The
coarsening rate for the V27 problem is roughly 7× with eight levels in the V -cycle for Hypre. Operator
complexity as defined by Hypre is close to 1.1 indicating more efficient V -cycles with aggressive coarsening,
however, an increased number of GMRES iterations are required compared to standard coarsening.

Strong scaling studies were conducted using two supercomputers, Peregrine at NREL and Cori at NERSC.
Peregrine nodes contain Xeon E5-2670 v3 Haswell processors, 2× 12 core sockets, 64 GB DDR4 memory,
inter-connected with an Infiniband network. Cori nodes consist of E5-2698 v3 Haswell processors clocked at
2.3 GHz, with 2× 16 core sockets, and 128 GB DDR4 memory. The inter-connect is the Cray Aries. Although
the model can support threads with kokkos and OpenMP, for the purposes of these runs, one MPI rank
per core was employed. The Nalu+Hypre configuration of the model is compared with the Nalu+MueLu
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version. The momentum solver in all cases is based on the Trilinos-Tpetra solver stack. The Belos GMRES
momentum solver is preconditioned with a symmetric Gauss-Seidel relaxation.

5.2.1 V27 41 Mesh

The unrefined R0 mesh for the V27 41 problem consists of 66 Million elements. One step of uniform refinement
using the “percept” tool from Sandia results in the R1 mesh consisting of 500 Million finite elements. Initially,
the V27 41 R0 case was run on Peregrine using 1536 cores for 40 time steps. The resulting number of elements
per core is close to 42K. The total simulation time for this run was 487 sec for Nalu+Hypre and 507 sec for
Nalu+MueLu. The solver component times and average iteration counts for the momentum and pressure
continuity solvers are provided in Table 1 below. We note that the ‘init‘ time for the Nalu+MueLu continuity
solver is 10× the ‘init’ cost in Nalu+Hypre. The solve times are roughly equivalent, however, the iteration
count for the Hypre solver is 5 versus 10 for MueLu. Thus, the cost per Hypre iteration is larger. This can
be partially attributed to GMRES communication overheads and the sparsity of the coarse matrices.

Component % Time % Time
myLowMach Solver
misc 4s 0.1 3s 0.1
Momentum Solver Belos/SGS Belos/SGS
init 76.2s 16 74.8s 17.0
assemble 71.1s 15 71.0s 14.0
load complete 57.1s 12 58.6s 7.0
solve 43.0s 8 43.6s 8.5
precond setup 0.4s 0.0 0.4s 0.0
misc 9.7s 0.2 9.1s 0.2
linear iterations 5 10
Continuity Solver Hypre MueLu
init 3.9s 0.1 30.9s 6.1
assemble 11.4s 2 12.6s 2.0
load complete 15.9s 3 8.6s 1.6
solve 81.9s 17 108.6s 21.3
precond setup 30.9s 6 28.3s 5.5
misc 14.7s 3 14.3s 2.8
linear iterations 17 22
IO Time 5.5s 0.1 8.0s 0.2
Non-conformal BC 45.0s 2 20.9s 4.0
Skin Mesh 0.1s 0 0.1s 0.0
Other 4s 0.1 15.0s 0.1
total time 488 100 507s 100

Table 1: Total simulation time with solver component times for V27 41 R0 66M
element mesh showing strong scaling performance up to 1536 cores on Peregrine.
Shown are results for Belos/SGS+Hypre and Belos/SGS+MueLu.

The V27 41 R1 mesh simulation was run on up to 12K cores of the NERSC Cori supercomputer for
100 time steps. The total R1 simulation time on 12K cores using Nalu+MueLu is 3413 seconds and for
Nalu+Hypre the time is 2923 seconds. The simulation times at different core counts are plotted in Figure 12.
Parallel efficiency is plotted in Figure 13. The solver component times and average iteration counts for the
momentum and pressure continuity solvers are provided in Table 2 below. The simulation times are also
provided in a separate Table 3 below with the number of DOF’s or FE nodes per core.

The momentum equations initialization is the largest time consumer and requires 25% of the simulation
time for Nalu+Hypre. We note that the initialization time for Nalu+MueLu continuity represents 18% of
the simulation time. The initialization time “init” is related to the Trilinos-Tpetra parallel communication
algorithms and related graph construction. The AMG “precond setup” time is associated with construction
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of the V -cycle hierarchy, including coarsening, smoother matrix splitting, re-balancing and communication.
Both the “init” time and “precond set-up” time increase as a percentage of run time as the number of cores
increases to 12K, thereby, inhibiting scaling. The “init” time for the Nalu+Hypre simulations is 60× less
than for Nalu+MueLu and accounts for much of the discrepancy in total simulation times.

Component % Time % Time
myLowMach Solver
misc 6.9s 0.9 7.2s 0.2
Momentum Solver Belos/SGS Belos/SGS
init 721.1s 25.0 696.0s 20.0
assemble 189.9s 6.5 191.0s 5.6
load complete 227.5s 7.7 222.5s 6.5
solve 413.3s 14.0 352.5s 10.3
precond setup 1.0s 0.03 1.1s 0.03
misc 24.7s 0.9 23.9s 0.7
linear iterations 11 10
Continuity Solver Hypre MueLu
init 10.3s 0.3 635.0s 18.5
assemble 36.2s 1.2 33.8s 1.0
load complete 59.7s 2.0 36.5s 1.0
solve 502.7s 17.2 580.7s 17.0
precond setup 287.9s 9.8 204.1s 6.0
misc 32.3s 1.1 43.5s 1.3
linear iterations 12 35
IO Time 24.6s 0.8 16.0s 0.5
Non-conformal BC 303.2s 10.4 305.1s 8.9
Skin Mesh 8.4s 0.3 3.6s 0.1
Other 73.3s 2.5 59.4s 1.7
total time 2923s 100 3413s 100

Table 2: Total simulation time with solver component times for V27 41 R1
500M element mesh showing strong scaling performance up to 12288 cores on
Cori. Shown are results for Belos/SGS+Hypre and Belos/SGS+MueLu.

The “init” time for the Muelu column under the “Continuity Solver” section, involves our initialization
and filling of the Tpetra CrsGraph object which holds the sparsity structure of the matrix for each of the
linear systems. We are currently undertaking an effort to reduce the “init” time for Tpetra by providing it
with sharp initial bounds for the length of each row. This will allow Tpetra to avoid dynamic allocations
and re-allocations during the filling stage. We will also be examining ways to reduce the amount of parallel
communication that Tpetra must perform to determine internal structures, etc.

Cores Nodes/Core Nalu+Hypre (s) Nalu+MueLu (s)
2048 111K 7873 9920
4096 55K 4568 5710
8192 27K 3186 3808
12288 18K 2923 3413

Table 3: Total simulation times for 100 time steps of the V27 41 R1 500M
element mesh showing strong scaling performance up to 12k cores. Shown are
results for Belos/SGS+Hypre and Belos/SGS+MueLu
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Figure 12: Total simulation times for 100 time steps of the V27 41 R1 500M
element mesh showing strong scaling performance up to 12k cores. Shown are
results for Belos/SGS+Hypre and Belos/SGS+MueLu
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Figure 13: Parallel efficiency plot for V27 41 R1 500M element mesh showing
strong scaling performance up to 12Kcores on Cori. Shown are results for
Belos/SGS+Hypre and Belos/SGS+MueLu.
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5.2.2 V27 41a Mesh

The unrefined R0 mesh for the V27 41a problem consists of 166 Million elements. One step of uniform
refinement using the “Percept” tool from Sandia results in the V27 41a R1 mesh consisting of 1.3 Billion
finite elements. The V27 41a R0 mesh simulation was performed on 3072 cores on Peregrine for 100 time
steps. The resulting number of elements per core is 54K. The total simulation time for this run was 1149 sec
for Nalu+Hypre and 1249 sec for Nalu+MueLu. The solver component times and average iteration counts
for the momentum and pressure continuity solvers are provided in Table 4 below. Here we note that the
“init” time for the continuity solver is 9× larger for Nalu+MueLu. The solve cost is also larger, however, the
‘precond setup‘ is slightly lower . The momentum “init” is still the dominant cost in the simulations.

Component % Time % Time
myLowMach Solver
misc 8s 1.0 8s 1.0
Momentum Solver Belos/SGS Belos/SGS
init 198.9s 17 197.2s 16.0
assemble 118.7s 10 118.9s 9.5
load complete 165.1s 14 164.3s 13.2
solve 104.0s 9 102.s 8.3
precond setup 0.8s 0.0 0.8s 0.0
misc 25.2s 2.2 24.0s 4.4
linear iterations 5 10
Continuity Solver Hypre MueLu
init 10.0s 1.0 92.7s 6.1
assemble 25.3s 2 23.1s 2.0
load complete 52.2s 4 30.2s 2.5
solve 217.9s 18 266.3s 21.3
precond setup 100.3s 9 73.9s 6.0
misc 41.8s 3 41.3s 2.8
linear iterations 16 21
IO Time 10.5s 0.1 8.0s 0.1
Non-conformal BC 47.5s 4 48.6s 4.0
Skin Mesh 0.1s 0 0.1s 0.0
Other 37.0s 3.0 46.0s 4.0
total time 1149 100 1249 100

Table 4: Total simulation time with solver component times for V27 41a R0
166M element mesh showing strong scaling performance up to 3072 cores on
Peregrine. Shown are results for Belos/SGS+Hypre and Belos/SGS+MueLu.

The V27 41a R1 case with 1.3 Billion elements was simulated on 12288 cores on Cori for 20 time steps.
The resulting number of elements per core is 105K. The total simulation time for this run was 948 sec for
Nalu+Hypre and 1418 sec for Nalu+MueLu. The solver component times and average iteration counts for the
momentum and pressure continuity solvers are provided in Table 5 below. In particular, note that the “init”
time for the continuity solver is now 40× larger for Nalu+MueLu. The solve cost for MueLu has increased.
The ‘precond setup‘ for Hypre is slightly lower . The continuity ‘solve’ is the dominant cost along with the
MueLu solve. Overall for the Nalu+MueLu run the total momentum and continuity ‘init‘ time is 33% of the
simulation time. An important observation is that the momentum equations solve time has increased together
with the number of GMRES iterations and represents a larger percentage than the continuity pressure solver.
The momentum solve may now require a multi-level AMG preconditioner. In all the results reported here,
the SIMD improvements from the FY17Q4 milestone were included.
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Component % Time % Time
myLowMach Solver
misc 2.6s 0.3 2.6s 0.2
Momentum Solver Belos/SGS Belos/SGS
init 256.7s 27 237.5s 16.7
assemble 35.6s 4 35.6s 2.5
load complete 65.8s 7 65.4s 4.6
solve 166.0s 17.5 240.3s 17
precond setup 0.5s 0.0 0.5s 0.0
misc 9.7s 1.0 9.8s 1.0
linear iterations 11 17
Continuity Solver Hypre MueLu
init 5.0s 1.0 199.3s 14.1
assemble 10.5s 2 8.2s 1.0
load complete 18.9s 2 11.6s 1.0
solve 122.6s 13 292.3s 20.6
precond setup 39.2s 4 62.2s 2.5
misc 14.7s 1.5 14.7s 1.0
linear iterations 20 38
IO Time 36.1s 3.7 44.5s 3.1
Non-conformal BC 44.1s 4.6 46.7s 3.3
Skin Mesh 14.7s 1.5 22.7s 1.6
Other 70.0s 7.4 81.0s 6.0
total time 948 100 1418 100

Table 5: Total simulation time with solver component times for V27 41a R1
1.3B element mesh showing strong scaling performance up to 12288 cores on Cori.
Shown are results for Belos/SGS+Hypre and Belos/SGS+MueLu.

5.3 Search and Custom Ghosting

The hybrid nonconformal scheme requires parallel searches to identify the opposing element from which
opposing numerical fluxes are computed. This search is performed each time step when moving mesh
simulations are active. The open-source code base currently supports two parallel searches: 1) an RTREE-
based search provided by Boost and 2) a KDTREE-based search provided by the Sierra Toolkit (STK). As
part of the Advanced Technology Development and Mitigation (ATDM) program, a new NGP-based parallel
search is under development and has been deployed to an internal Sierra application code. This parallel
search, which is based on the MORTON3 patent, supports threading. At present, the open source Nalu
interface is not activating this methodology as the above search is limited to an internal Sandia product.
However, evaluation of this search is a planned activity for FY18. Parallel ghosting of opposing elements that
are off-processor is managed by the STK Ghosting interface. This interface, which has been deployed in the
production code base, allows a simple ability to provide the dynamic list of required ghosted entities for the
scheme, i.e., opposing faces, opposing elements, and the nodes connected to each.

The benchmark for the current parallel search and custom ghosting was accomplished through the set
of production V27 meshes. Results indicated that the ghosting and parallel search algorithmic component
of the overall simulation time was always under 5% of overall simulation time. In a separate study, the
performance disparity between KDTREE and RTREE was small. In general, the surface-based searches and
modest custom ghosting events appear to be a low-consumer of the overall simulation time at this given
computational scale.

As computational resources increase and the mesh sizes move beyond the 32-bit threshold, the nonconformal
algorithm search and custom ghosting timings will be revisited. The cost of the parallel search can increase

3 https://www.google.com/patents/US9396512
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by an errant user specification of search tolerance. With such events, too many candidate opposing elements
are provided to the fine search from from the coarse search. This increases the custom ghosting size and also
requires more elements to query to identify the “best” opposing set of element. Efforts to possibly incorporate
intelligent search tolerances are expected later in the year. At present, several modifications to the former
nonconformal algorithm were completed in FY18/Q1, most notably a “dynamic” algorithm in which the
custom ghosting object is not destroyed and recreated (see Section 6).

5.4 Hybrid Topology Kokkos-Kernels

The FY17/Q4 effort drove the development of the Nalu Kernel that provides a computational algorithm
construct using Kokkos data structures. These kernels are integrated within a generalized STK/Kokkos
SolverAlgorithm design that allows for a team-based nested Kokkos-parallel functionality. Moreover, the
extensive usage of the STK SIMD interface allows for the interleaving of data to remove the requirement to
rely on the compiler for vectorization. At the end of FY17/Q4, this methodology had been prototyped and
demonstrated for homogeneous hexahedral topology code path. In FY18/Q1, the full transition to Kokkos
was acomplished for all interior topology matrix contributions of immediate interest to the wind application
space. The complete transition of the MasterElement core methods, e.g., gradient operators, area vector, etc.,
from FORTRAN-based implementations to shared memory Kokkos Views was accomplished.

The benchmarking of the Kokkos-based Kernel approach for the production V27 41a mesh (with tower
and nacelle) indicated that overall simulation time was approximately 12% faster with the Kokkos-based Nalu
Kernel design. In this study, 100 timesteps were used; the platform was the SNL institutional Ghost cluster
(Intel Broadwell with Omni-Path high speed interconnect). The number of threads used was unity, however,
the SIMD interface was active. Therefore, only the matrix assembly timings include possible speed-ups solely
from the SIMD interface. In the current SIMD interface, data is unpacked prior to interfacing with the solver
object. Assembly timing for key kernels such as the momentum advection/diffusion contribution noted a 2.3x
speed-up (from 179 seconds to 78 seconds). For continuity assembly, which is only a simple Laplace operator,
timings reduced from 23 seconds to 17 seconds. As noted, in this study flat MPI was used without threading.
As such, the speed-ups noted here are solely due to the new homogeneous algorithm design in which a low
level computational Kernel is templated on topology traits along with an underlying SIMD design. This study
provides confidence that the new developer-friendly multi-dimensional array Kokkos/SIMD abstractions does
not penalize performance.

6. APPLICATION IMPROVEMENTS

In this milestone effort, several application code improvements have been deployed. This section describes
the set of notable code improvements and the associated technical drivers for the work.

6.1 Faceting

As the project continues to move down the path for higher-order discretizations, it is expected that the
faceting at interfaces due to the previous low-order representation of a curved surface will improve. However,
a primary finding in early full-scale V27 production simulation studies was that generalized unstructured
tetrahedral element interfaces at the DG interface required more mesh resolution than structured, hexahedral
interfaces4. In order to explore this sensitivity, a representative tetrahedral mesh was created that only
included an inner rotating disk at 4-degree tilt in order to match the formal V27 size configuration, i.e.,
O(30)meter rotating inner cylinder. The flow configuration was set to inflow, open and symmetry to allow for
a purely uniform flow. Varying mesh resolutions using either hexahedral or tetrahedral topologies were run.
The revolution rate was set at a value more that five times the highest design configuration (30 radians/second)
to push the algorithm and mesh velocities at the representative radius. Finally, mesh resolution was varied
from 1 meter to 0.25 meters. In this particular configuration, any non-streamwise velocity component can be
considered an L∞ error.

4Here, full-scale is defined by the tower, nacelle, cone and blade geometry that drove tetrahedral topologies at the nonconformal
interface
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Figure 14: Velocity norm for baseline surface-based hybrid method.

Figure 15: Velocity norm for the overlapping DG scheme in which the mesh
blocks now have a ten percent overlap.

For all of the near-nonconformal interface meshes that used quasi-structured hexahedral meshes, the error
norm due to the moving mesh interface was � 0.01 percent. Nonlinear norms remained in the O(1e-14)
range indicating pure one-dimensional flow. However, for tetrahedral meshes, the norms were considerably
higher. Figure 14 outlines the error in the x-component of velocity for the mesh resolution of one meter for
the tetrahedra-based mesh; shown are the x-velocity component values at the inner rotating cylindrical mesh
block.

In Figure 15, the surface-based approach has been changed in favor of an overlapping algorithm. In
this formulation, the inner mesh overlaps the background stationary mesh. Therefore, the exposed surface
integration points now are mapped to opposing elements. The standard hybrid algorithm applies, however,
rather that an opposing surface being used to compute gradients, length scales, etc., the owning element does.
This overlapping scheme has similar attributes to an overset scheme, however, does not include deactivation
of overlapped elements. Moreover, if the overlap is too large, then the first layer of opposing elements can be
missed. In such cases, the search is also more complex in that the set of elements with an exposed face may
not be the full set of best candidate elements. As seen from the figure, the improvement in error norm is not
appreciable and suggests another underlying issue. Nevertheless, this formulation can provide a unification
of the sliding mesh and overset algorithm. Currently, the overset algorithm is best described as an implicit
constraint-based approach, however, could easily be cast within a weak surface integration as noted in this
section.

The above set of findings from the numerical experiments suggest that there may be an algorithmic
nuance or bug within surface integration of the mesh velocity as a non-rotating inner disk does not exhibit
any appreciable numerical error. Specifically, the advection term for any scalar φ can be written as,
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Figure 16: Velocity norm for volumetric mesh velocity source term approach.

∫
Γ

ρ (uj − vj)φnjdΓ, (12)

where vj is the mesh velocity and uj − vj is the velocity relative to the mesh. In this usage of the Gauss-
Divergence theorem, which is common in finite volume schemes, volume integrals have been transformed to
surface contributions. In the case of general tetrahedral meshes, nodes at the curved surfaces can be out of
problematic and may provide additional error. An alternative to the above advection form is as follows:∫

Γ

ρujφnjdΓ−
∫

Ω

∂ρφvj
∂xj

dΩ. (13)

In the above equation, the volumetric gradient operator can simply be computed using elemental CVFEM
shape function derivatives. Figure 15 provides the error norms for the one-meter resolution tetrahedral mesh.
As shown by the results, the error is now commensurate with the hexahedral mesh results; O(1e-14).

In practice, surface and volume integration should produce numerically the same result even in the presence
of complex boundary data at curved surfaces. To further understand each methodology, the divergence of
mesh velocity was post processed using either surface of volume integration. The L2 lumped projected nodal
gradient for the mesh velocity, using surface integration, is given by,

Gjvi =

∫
vinjdΓ∫
dΩ

, (14)

while for volume integration, it is as follows:

Gjvi =

∫
∂vi
∂xj

dΩ∫
dΩ

. (15)

For simple solid rotation, the divergence of the mesh velocity should be zero.
Figure 17 outlines the L∞ norm for the divergence of mesh velocity for the simple rotating tetrahedral

mesh. Although the mesh velocity divergence is zero for both schemes at the interior nodes (not shown
in these images), at the surface location, the surface-based reconstruction is clearly non-zero. However,
as suggested from the full fluids experiments, the volumetric-based approach is nearly machine precision
zero. In this experiment, mesh velocity is provided based on the analytical solid rotation and not based on
numerical time derivatives of the mesh displacement. These findings clearly suggested a bug in the underlying
tetrahedral/triangle topology in the Nalu code base.

Further investigations to identify the source of this nonintuitive numerical finding were carried out in
both the Nalu and Sierra Thermal/Fluids code base Fuego, which has adopted the hybrid nonconformal
methodology for external non-wind applications. A full suite of unit tests for all volume and surface topologies
pointed to a conceptual issue with quadrature locations for the Tet4SCS, Tri3DSCS, and Tri2DSCV elements.
After changing quadrature points for these topologies, Figure 18 outlines the expected numerical norm using
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Figure 17: Post processed mesh velocity divergence comparing surface- and
volume-based integration.

Figure 18: Velocity norm for surface-based mesh velocity approach when using
the newly defined tetrahedral quadrature points.

the surface-based quadrature approach. Currently, both subcontrol volume surface and volume approaches
for the tetrahedral topology provide like results. As the Tri3DSCS topology exists in the Wedge6 and Pyramid5,
further verification of all CVFEM supported topologies will be carried out in the FY18/Q2 ExaWind project
time frame. A shared story between the ExaWind and the Sierra Thermal/Fluids team will be executed in
FY18/Q2 that will highlight the synergy between the ASC and ECP portfolio. At the time of this report, all
topologies (not including pyramids) have been converted.

6.1.1 Opposing Normal Treatment

In the case of highly faceted low-order representation of a curved surfaces, the current and opposing normal
definition can be misaligned. In such cases, a trivial change that has significantly improved simulation quality,
most notably in the pressure field, is to define the opposing normal as,

noj = −ncj . (16)

In the above form, the current exposed face normal definition prevails over the actual opposing normal based
on geometry.

6.2 Matrix Reduction Techniques

In general, an implicit matrix contribution for the complete non-conformal interface discretization stencil is
desired. As the core use-case in wind energy requires rotation, a dynamic stencil matrix assembly and solve
interface is required. In the current production implementation, a parallel search, parallel ghosting (using
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the STK custom ghosting interface) and matrix reinitialization are performed at each time step. Several
possibilities to remove the need and/or frequency of the matrix reinitialization exists. For example, the
opposing column entries in the Jacobian can be removed and repaired by iteration. Second, matrix entries
can be lagged over the simulation. Finally, the matrix stencil can be “bloated” to include elements that will
be part of the stencil at future simulation times. All methods are expected to provide a trade-off between
stability and performance.

6.2.1 Removal of Matrix Entries for Opposing Elements

Omitted matrix entries for the opposing elements can be repaired by inner iteration. This approach allows
for a constant matrix stencil at the expense of missing information in the Jacobian. In this high-level study,
inner iteration counts of four and two are compared against the baseline algorithm, i.e., full matrix entries.
The canonical test case is that of three independently rotating blades in a two-dimensional configuration.
Figure 19 outlines a typical example comparing the baseline method with an approach that removes the
opposing matrix entries, however, adds a set of inner iterations over the given PDE of two or four. When no
inner iterations are performed, the simulations diverge. This stability issue is due to the elliptic pressure
Poisson system being decoupled between the stationary and moving blocks. The resulting predicted pressure
field is used within the velocity projection step. Given a corrupt pressure projection step, the velocity is
contaminated and stability issues are found. Using four inner iterations results in a stable simulation with
only slight distortion of the flow field. The usage of two inner iterations is stable, but results in appreciable
interface noise. However, the increased cost of the overall simulation when using four iterations, i.e., the
minimum number found in this study to produce a satisfactory interface velocity field, simulation time
increases more than a factor of two. This is due to the simple fact that the Poisson solve required for the
continuity enforcement represents an appreciable cost. Therefore, reducing Jacobian entries to avoid solver
reinitialization events is accompanied by higher solver times. It was determined that this path forward was
not satisfactory due to the increase in simulation cost required to adequately propagate information for the
elliptic continuity system.

6.2.2 Lagging Matrix Entries

A second approach explored to reduce matrix reinitialization events is to lag (in time) the matrix entries. In
other words, the matrix at any given time may include connectivity over the full moving and stationary blocks,
however, can be out of date. The code was modified to selectively reuse the linear system and preconditioner.
The same three-blade simulation case was used to evaluate this approach. Findings for this method were
mixed. Specifically, for stationary meshes, the lagging of matrix entries was robust even at high Courant
numbers. However, with inner mesh revolution, a substantial Courant stability limit was noted (less than
approximately two) when the frequency of reinitialization events was greater than approximately four. Again,
a tradeoff between stability and performance was noted. This methodology, which was developed on a fork of
Nalu, was not promoted to the production code base.

6.2.3 Increase in Mesh Stencil

The final methodology under construction is the ability to increase the parallel search tolerance or percentage
of bounding box expansion such that the list of possible opposing elements is larger than simply the true
closest opposing element. Therefore, the coarse search identifies a set of opposing elements that forms the
“bloated” stencil while the fine search determines the best opposing element. The non-active columns in the
coarse search are provided zero entry values. The underlying nonconformal data structure retains knowledge
over the “active” stencil and “available stencil” by storing global face/element IDs of the opposing element
set. When the mesh moves, the increased search tolerance returns a set of elements from the coarse search. If
the active “best” opposing element is found in the old set of face/element IDs, the matrix graph is re-used
and setup is delayed. In this formulation, no loss of matrix information is noted. However, there exists
both an increased stencil size in the linear system and the custom ghosting object is required to now have
state, e.g., the current set of ghosted face/elements from the latest search and the previous set of ghosted
face/elements. In general, the custom ghosting object is also larger due to the increase search tolerance.
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(a) Baseline method with fully coupled block contri-
butions.

(b) Four inner equation system iterations

(c) Two inner equation system iterations

Figure 19: Velocity flow field shadings outlining the effect of omitting opposing
matrix entries in favor of inner iterations.
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In a typical sliding mesh wind energy application, which may be run at a maximum Courant number of
ten, the simulation time step can be O(5e-5) due to the high velocities near the tip of the wing. However,
for a diameter of approximately thirty meters, the Courant number will be far less than unity. Essentially,
the mesh stencil at the nonconformal inteface is varying very slowly over the time scale of the fluid motion.
This allows for a large savings in setup costs. For the three-blade example outlined in Figure 19, preliminary
results of this bloated stencil suggest that over a fifty time step interval, re-initialization costs can be reduced
from fifty to six reinitialization events. If the search tolerance is doubled, the resulting initialization count
over the fifty time steps is further reduced to three events. Efforts to now interface the reuse ability to the
linear system construction are underway and expected to be completed early in FY18/Q2. At that point, the
increased cost of matrix assembly, which is due to the increased stencil, will be evaluated.

6.3 Search and Custom Ghosting

Opposing elements that exist on the opposing block boundary are identified by a geometric proximity search,
and then brought to the current processor by using a ’custom ghosting’ mechanism in the STK-Mesh library.
The custom ghosting STK-mesh interface, which has been deployed to the production code base, is used
for a variety of low-Mach use cases including the hybrid CVFEM/DG algorithm, overset, multi-physics
coupling over disparate meshes, e.g., fluid structure interaction (FSI), congugate heat transfer (CHT), and
the coupling of participating media radiation (PMR) to non-isothermal fluid flow. The custom ghosting
interface is also used for data manipulation including the initialization of a new fine mesh simulation using a
precursor coarse mesh result, select output to a subset of the mesh (consider a PIV or PLIF-like application),
and in conjunction with a line-of-sight data probes post processing interface. STK-Mesh defines a terminology
where a ’send-ghost’ is an element owned by the current processor and needs to be ghosted onto another
processor. The element is called a ’receive-ghost’ on that non-owning processor.

Ghosting lists are defined by passing STK-Mesh a list of owned elements and the processors to which they
should be sent. Due to sliding mesh motion, the ghosting lists can potentially change every time-step, as
new elements move into the opposing space, and also as other elements move on and are no longer opposing.
However, much of the time the ghosting lists donot completely change; i.e., not all elements are replaced
rather a few are removed as they move out of range. New elements are added as required.

The original implementation discarded all ghosts and recreated ghosting lists every time-step. It was later
found that it was more efficient to take an incremental approach where at each time-step we determined
’change-lists’ for the ghosting, i.e., a list of new elements to ghost, and a list of ghosted elements that are no
longer required. Passing these lists to STK-Mesh allowed for less communication and computational expense
as compared to completely destroying and re-creating all ghost information. The methodology outlines a
in-situ paradigm to explore in other aspects of the code, e.g., the in-situ construction of the matrix graph.

6.4 Hybrid Mesh Topologies

The mesh created for the V27 contains multiple element topologies, including hexahedra, tetrahedra, pyramids,
and wedges. Initial simulation studies with this mesh exhibited some artificially high velocities, depending
on the selection of wall boundary conditions and advection stabilization approach. The high velocities were
observed at sharp corners in the turbine geometry; for example, Figure 20 shows the spurious behavior
occurring at corners of the nacelle. It was noted that the use of wall functions made this behavior worse
(relative to using a no-slip boundary condition5), and that use of a nonlinear stabilization operator (NSO), in
addition to default advection stabilization, improved this behavior.

To explore this issue further, a model problem was constructed, consisting of flow past a rectangular prism,
with dimensions approximately equal to those of the V27 nacelle. Various meshes were made for this problem,
utilizing different element topologies and different anisotropic mesh spacings near sharp corners. The flow
past this rectangular prism was simulated for a free-stream velocity of 7.6 m/s. The nominal simulation
parameters were as follows:

• WALE turbulence model

5Unit testing of the Wedge6 noted a mapping error of opposing node to the nearest node to a boundary integration point for
a particular element ordinal.
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• CVFEM scheme

• Second-order time advancement

• Default advection stabilization

• Shifted gradient operator for pressure

• Wall-function boundary condition on solid surfaces

• Wall-normal mesh spacing for first off-surface mesh point of 0.001 meters

First, a mesh based on near-wall extrusion of surface triangles into wedge elements was examined, in
order to reproduce the solution behavior seen in the V27 problem. Figure 21 shows a closeup of this mesh,
and the oscillatory streamwise velocity field that develops near corners. To assess the relationship of this
solution behavior to element type, a similar mesh was constructed, only with surface quads extruded into hex
elements. The surface element edge lengths and mesh spacing distribution in the wall-normal direction were
very similar to that of the original wedge mesh. Figure 22 shows that the undesirable solution oscillations
occur also for this hex mesh, suggesting that element topology is not to blame.

To examine the effect of spatial resolution of the mesh near corners, two meshes were constructed with
refinement of the surface elements in the direction normal to the sharp edges of the geometry. One mesh
employed extruded sharp-edge-aligned triangles, with mesh spacing along the surface and normal to the
sharp edge equal to 0.001 meters, see Figure 23. The second mesh employed extruded quads with a sharp-
edge-normal mesh spacing of 0.002 meters, see Figure 24. Significant spurious oscillations in the streamwise
velocity field are not observed for these two meshes, indicating that mesh resolution near the sharp corners
plays a fundamental role in the solution behavior.

Figure 25 illustrates the issue that arises when coarse surface meshes are used near a sharp corner with
wall function boundary conditions. Consider the flow tangential to the upper surface, which separates from
the surface at the sharp corner as shown. Just downstream of the corner, a very thin shear layer develops;
the magnitude of the velocity jump across this shear layer is strengthened by the use of a wall function, which
allows for a non-zero “slip” velocity at the mesh node coincident with the sharp corner. On the back-side solid
surface, the boundary condition enforces zero max flux in the streamwise direction, reinforcing the generation
of the thin layer. If the mesh spacing across this thin shear layer is inadequate to properly resolve it, then in
the absence of sufficient numerical dissipation it is expected that numerical oscillations will develop.

In order to further explore the effect of numerical scheme on these oscillation, the original extruded
wedge mesh with coarse near-corner resolution was also run with the edge-based scheme as well as with the
CVFEM scheme with the NSO operator (option NSO 2ND ALT). Figure 26 shows that the edge scheme
does exhibit some spurious oscillations, but the magnitude is smaller than those of the CVFEM scheme. It is
not clear why this is the case; however, we conjecture that the edge scheme is more dissipative when faced
with under-resolution of the mesh at a corner. The NSO solution is smooth and stable, but also more diffuse,
as seen in Figure 26. Since the NSO operator is based on a fine-scale residual estimate, the scheme is able to
apply more dissipation to an under-resolved flow feature and maintain numerical stability.

Finally, we note that artificially high velocities were also observed near blade tips. Figure 27 shows the
mesh topology at a blade tip, illustrating the same issue encountered with the nacelle: under-resolution of
the separation zone near a sharp geometric feature. An effort is underway to improve the meshes in these
areas, such that adequate resolution of thin separation layers is obtained.

7. CONCLUSION

In this milestone effort, a design-order hybrid CVFEM/DG scheme was developed, verified and deployed to
support the wind application space that requires dynamic sliding mesh interfaces. Both low- and high-order
support was demonstrated for the canonical viscous vortex simulation. A set of numerical tests to drive the
improvement of the hybrid scheme at hybrid mesh topology nonconformal interfaces was developed. It is
hoped that the research carried out under this milestone effort (and captured in a technical paper) will be
accepted to the Journal of Computational Physics (at the time of this milestone write-up, the paper is in
“review” status).
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Figure 20: Spurious velocities at sharp corners of the V27 nacelle.

(a) Rectangular prism mesh with extruded wedges.

(b) Stream-wise velocity solution.

Figure 21: Rectangular prism test problem, CVFEM with wedge elements.
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(a) Rectangular prism mesh with extruded wedges.

(b) Stream-wise velocity solution.

Figure 22: Rectangular prism test problem, CVFEM with hex elements.
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(a) Rectangular prism mesh with extruded wedges.

(b) Stream-wise velocity solution.

Figure 23: Rectangular prism test problem, CVFEM with wedge elements and
refinement near sharp corners.
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(a) Rectangular prism mesh with extruded wedges.

(b) Stream-wise velocity solution.

Figure 24: Rectangular prism test problem, CVFEM with hex elements and
refinement near sharp corners.

Figure 25: Schematic illustrating the under-resolution issue at sharp corners.
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(a) Stream-wise velocity solution, edge scheme.

(b) Stream-wise velocity solution, NSO stabilization
term.

Figure 26: Rectangular prism test problem on the coarse wedge mesh, with
alternative spatial discretization options.

Figure 27: V27 blade tip mesh topology, illustrating coarse resolution near
sharp edges.
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Several production runs have been carried out using the hybrid sliding mesh scheme. Production runs for
the Vestas V27 turbine (with and without tower/nacelle) have been run at modest hybrid mesh resolutions,
i.e., 60 to 500 million elements. The project also drove a stretch goal of running the 1.3 billion element V27
production mesh. Application-driven improvements noted the testing of several modified matrix assembly
procedures to mitigate matrix initialization requirements. The NGP efforts realized in FY17/Q4 were
transitioned to production status and were demonstrated within hybrid mesh V27 production runs.

The FY18/Q1 project effort also drove the quantification of solver and set-up performance. Moreover, a
new internal matrix assembly procedure for the Hypre solver package was developed. Results indicate that
matrix reinitialization costs are increasing for Tpetra-based assembly while for the Hypre interface, these
costs are remaining low. Preconditioner setup costs at the scales tested were reasonable, although previous
scaling data suggests that at mesh counts beyond the 32-bit scale, these costs will increase.

7.1 Path Forward

A set of paths to explore in future ExaWind milestone efforts are as follows:

1. Given the INCITE computational award, it is anticipated that the scale of simulation meshes will
increase to beyond the 32-bit limit. This will be a priority for the remaining FY18 effort.

2. Continued quantification of re-initialization timing events beyond the 1.3 billion element mesh resolution
(at present, the team has also generated a nearly five-billion element hybrid mesh).

3. Improved matrix initialization approaches such as static graph construction will be prioritized (at the
time of this report, this is an active story under Jira).

4. Advance matrix stencil bloating for the nonconformal interface in order to reduce the frequency of
matrix setup steps while maintaining the full Jacobian entries.

5. Continued exploration of ATDM-based parallel searches.

6. Dynamic, intelligent search tolerances to ensure efficient coarse searchers. As the search is processed
each time step, an appropriate length scale from the previous search can be used to guide the current
search.

7. Combined story between the ExaWind project and Sandia National Laboratories Thermal/Fluids
department (1541) to drive CVFEM quadrature placement.

8. Continued work on the NSO kernel.
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